Vector Expansion using Base Vectors

Having defined an orthonormal set of base vectors, we can express any vector in terms of these unit vectors:

$$
\mathbf{A}=A_{x} \hat{a}_{x}+A_{y} \hat{a}_{y}+A_{z} \hat{a}_{z}
$$

Note therefore that any vector can be written as a sum of three vectors!

* Each of these three vectors point in one of the three orthogonal directions $\hat{a}_{x}, \hat{a}_{y}, \hat{a}_{z}$.
* The magnitude of each of these three vectors are determined by the scalar values A_{x}, A_{y}, and A_{z}.
* The values A_{x}, A_{y}, and A_{z} are called the scalar components of vector \mathbf{A}.
* The vectors $A_{x} \hat{a}_{x}, A_{y} \hat{a}_{y}, A_{z} \hat{a}_{z}$ are called the vector components of A.

Q: What the heck are scalar the components A_{x}, A_{y}, and A_{z}, and how do we determine them ??

A: Use the dot product to evaluate the expression above!

Begin by taking the dot product of the above expression with unit vector \hat{a}_{x} :

$$
\begin{aligned}
\boldsymbol{A} \cdot \hat{a}_{x} & =\left(A_{x} \hat{a}_{x}+A_{y} \hat{a}_{y}+A_{z} \hat{a}_{z}\right) \cdot \hat{a}_{x} \\
& =A_{x} \hat{a}_{x} \cdot \hat{a}_{x}+A_{y} \hat{a}_{y} \cdot \hat{a}_{x}+A_{z} \hat{a}_{z} \cdot \hat{a}_{x}
\end{aligned}
$$

But, since the unit vectors are orthogonal, we know that:

$$
\hat{a}_{x} \cdot \hat{a}_{x}=1 \quad \hat{a}_{y} \cdot \hat{a}_{x}=0 \quad \hat{a}_{z} \cdot \hat{a}_{x}=0
$$

Thus, the expression above becomes:

$$
A_{x}=\boldsymbol{A} \cdot \hat{a}_{x}
$$

In other words, the scalar component A_{x} is just the value of the dot product of vector \boldsymbol{A} and base vector \hat{a}_{x}. Similarly, we find that:

$$
A_{y}=\boldsymbol{A} \cdot \hat{a}_{y} \quad \text { and } \quad A_{z}=\boldsymbol{A} \cdot \hat{a}_{z}
$$

Thus, any vector can be expressed specifically as:

$$
\begin{aligned}
\boldsymbol{A} & =\left(\boldsymbol{A} \cdot \hat{a}_{x}\right) \hat{a}_{x}+\left(\boldsymbol{A} \cdot \hat{a}_{y}\right) \hat{a}_{y}+\left(\boldsymbol{A} \cdot \hat{a}_{z}\right) \hat{a}_{z} \\
& =A_{x} \hat{a}_{x}+\boldsymbol{A}_{y} \hat{a}_{y}+\boldsymbol{A}_{z} \hat{a}_{z}
\end{aligned}
$$

We can demonstrate this vector expression geometrically.

Note the length (i.e., magnitude) of vector \boldsymbol{A} can be related to the length of vector $A_{y} \hat{a}_{y}$ using trigonometry:

$$
A_{y}=|\boldsymbol{A}| \cos \theta_{A y}
$$

Likewise, we find that the scalar component A_{x} is related to $|\boldsymbol{A}|$ as:

From this geometric interpretation, we can see why we often refer to the scalar component A_{x} as the scalar projection of vector \boldsymbol{A} onto vector (direction) \hat{a}_{x}.

Likewise, we often refer to the vector component $A_{x} \hat{a}_{x}$ as the vector projection of vector \boldsymbol{A} onto vector (direction) \hat{a}_{x}.

As you may have already noticed, the scalar component A_{x}, which we determined geometrically, can likewise be expressed in terms of a dot product!

$$
\begin{aligned}
A_{x} & =|\boldsymbol{A}| \cos \theta_{A x} \\
& =|\boldsymbol{A}|\left|\hat{a}_{x}\right| \cos \theta_{A x} \\
& =\boldsymbol{A} \cdot \hat{a}_{x}
\end{aligned}
$$

Accordingly, we find that the scalar component of vector A are determined by "doting" vector \mathbf{A} with each of the three base vectors $\hat{a}_{x}, \hat{a}_{y}, \hat{a}_{z}$:

$$
\begin{aligned}
& A_{x}=\boldsymbol{A} \cdot \hat{a}_{x} \\
& A_{y}=\boldsymbol{A} \cdot \hat{a}_{y} \\
& A_{z}=\boldsymbol{A} \cdot \hat{a}_{z}
\end{aligned}
$$

Said another way, we project vector \boldsymbol{A} onto the directions $\hat{a}_{x}, \hat{a}_{y}, \hat{a}_{z}$. Either way, the result is the same as determined earlier: every vector \boldsymbol{A} can be expressed as a sum of three orthogonal components:

$$
\begin{aligned}
\boldsymbol{A} & =\left(\boldsymbol{A} \cdot \hat{a}_{x}\right) \hat{a}_{x}+\left(\boldsymbol{A} \cdot \hat{a}_{y}\right) \hat{a}_{y}+\left(\boldsymbol{A} \cdot \hat{a}_{z}\right) \hat{a}_{z} \\
& =A_{x} \hat{a}_{x}+A_{y} \hat{a}_{y}+A_{z} \hat{a}_{z}
\end{aligned}
$$

For example, consider a vector \mathbf{A}, along with two different sets of orthonormal base vectors:

The scalar components of vector \boldsymbol{A}, in the direction of each base vector are:

$$
\begin{array}{ll}
A_{x}=\boldsymbol{A} \cdot \hat{a}_{x}=2.0 & A_{1}=\boldsymbol{A} \cdot \hat{a}_{1}=0.0 \\
A_{y}=\boldsymbol{A} \cdot \hat{a}_{y}=1.5 & A_{2}=\boldsymbol{A} \cdot \hat{a}_{2}=2.5 \\
A_{z}=\boldsymbol{A} \cdot \hat{a}_{z}=0.0 & A_{3}=\boldsymbol{A} \cdot \hat{a}_{3}=0.0
\end{array}
$$

Using the first set of base vectors, we can write the vector A as:

$$
\begin{aligned}
\boldsymbol{A} & =A_{x} \hat{a}_{x}+A_{y} \hat{a}_{y}+A_{z} \hat{a}_{z} \\
& =2.0 \hat{a}_{x}+1.5 \hat{a}_{y}
\end{aligned}
$$

Or, using the second set, we find that:

$$
\begin{aligned}
\boldsymbol{A} & =A_{1} \hat{a}_{1}+A_{2} \hat{a}_{2}+A_{3} \hat{a}_{3} \\
& =2.5 \hat{a}_{2}
\end{aligned}
$$

It is very important to realize that:

$$
\boldsymbol{A}=2.0 \hat{a}_{x}+1.5 \hat{a}_{y}=2.5 \hat{a}_{z}
$$

In other words, both expressions represent exactly the same vector! The difference in the representations is a result of using different base vectors, not because vector \boldsymbol{A} is somehow "different" for each representation.

