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Vector Expansion using 
Base Vectors 

 
Having defined an orthonormal set of base vectors, we can 
express any vector in terms of these unit vectors: 
 
 

ˆ ˆ ˆx x y y z zA a A a A a= + +A  
 
 

Note therefore that any vector can be written as a sum of 
three vectors! 
 

* Each of these three vectors point in one of the three 
orthogonal directions x̂a , ŷa , ẑa . 

 
* The magnitude of each of these three vectors are 

determined by the scalar values Ax, Ay, and Az .  
 

* The values Ax, Ay, and Az are called the scalar 
components of vector A. 

 
* The vectors ˆx xA a , ˆy yA a , ˆz zA a  are called the vector 

components of A. 
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Q:  What the heck are scalar the components Ax, Ay, 
and Az, and how do we determine them ??  
 
A:   Use the dot product to evaluate the expression 
above ! 
 
 

Begin by taking the dot product of the above expression with 
unit vector x̂a : 
 

( )ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ
x x x y y z z x

x x x y y x z z x

a A a A a A a a
A a a A a a A a a

⋅ = + + ⋅

= ⋅ + ⋅ + ⋅

A
 

 
But, since the unit vectors are orthogonal, we know that: 
 

ˆ ˆ ˆ ˆ ˆ ˆ1 0 0x x y x z xa a a a a a⋅ = ⋅ = ⋅ =  
 

Thus, the expression above becomes: 
 

ˆx xA a= ⋅A  
 
In other words, the scalar component Ax is just the value of the 
dot product of vector A and base vector x̂a .  Similarly, we find 
that: 

ˆ ˆandy y z zA a A a= ⋅ = ⋅A A  
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Thus, any vector can be expressed specifically as: 
 
 

( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ
x x y y z z

x x y y z z

a a a a a a
A a A a A a

= ⋅ + ⋅ + ⋅

= + +

A A A A
 

 
 
We can demonstrate this vector expression geometrically. 

 
 
 
 
 
 
 
 
 
Note the length (i.e., magnitude) of vector A can be related to 
the length of vector ˆy yA a  using trigonometry: 
 
 
 
 
 
 
 

x̂a

ŷa  

ˆ ˆx x y yA aA a= +Aˆy yA a  

ˆx xA a

ˆ ˆx x y yA aA a= +A

ˆy yA a

Ayθ
cos AyyA θ= A

x̂a

ŷa
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Likewise, we find that the scalar component xA is related to A  
as: 
 
 
 
 
 
 
 
 
From this geometric interpretation, we can see why we often 
refer to the scalar component Ax as the scalar projection of 
vector A onto vector (direction) x̂a . 
 
Likewise, we often refer to the vector component ˆx xA a  as the 
vector projection of vector A onto vector (direction) x̂a . 

ˆ ˆx x y yA aA a= +A

ˆx xA aAxθ

cos AxxA θ= Α
x̂a

ŷa

As you may have already noticed, the 
scalar component Ax, which we 
determined geometrically, can likewise 
be expressed in terms of a dot product! 

 
cos
ˆ cos

ˆ

x Ax

x Ax

x

A
a

a

θ

θ

=

=

= ⋅

Α

Α

Α
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Accordingly, we find that the scalar component of vector A are 
determined by “doting” vector A with each of the three base 
vectors ˆ ˆ ˆ, ,x y za a a : 
  

ˆ
ˆ

ˆ

x x

y y

z z

A a
A a
A a

= ⋅

= ⋅

= ⋅

A
A

A

 

 
 
Said another way, we project vector A onto the directions 
ˆ ˆ ˆ, ,x y za a a .  Either way, the result is the same as determined 

earlier: every vector A can be expressed as a sum of three 
orthogonal components: 
 
 

( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ
x x y y z z

x x y y z z

a a a a a a
A a A a A a

= ⋅ + ⋅ + ⋅

= + +

A A A A
 

 
 
For example, consider a vector A, along with two different sets 
of orthonormal base vectors: 
 
 
 
 
 
 

x̂a

ŷa

1̂a  

2̂a  

A
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The scalar components of vector A, in the direction of each 
base vector are: 
 

ˆ .
ˆ .
ˆ .

2 0
1 5
0 0

x x

y y

z z

A a
A a
A a

= ⋅ =

= ⋅ =

= ⋅ =

A
A
A

                  
ˆ .
ˆ .
ˆ .

1 1

2 2

3 3

0 0
2 5
0 0

A a
A a
A a

= ⋅ =

= ⋅ =

= ⋅ =

A
A
A

 

 
Using the first set of base vectors, we can write the vector A 
as: 

ˆ ˆ ˆ

ˆ ˆ. .2 0 1 5
x x y y z z

x y

A a A a A a
a a

= + +

= +

A
 

 
 
 
Or, using the second set, we find that: 
 

ˆ ˆ ˆ
ˆ.

1 1 2 2 3 3

22 5
A a A a A a

a
= + +

=

A
 

 
It is very important to realize that: 
 

ˆ ˆ ˆ. . . 22 0 1 5 2 5x ya a a= + =A  
 
In other words, both expressions represent exactly the same 
vector!  The difference in the representations is a result of 
using different base vectors, not because vector A is somehow   
“different” for each representation. 

 

ˆ.1 5 ya

ˆ.2 0 xa

A

A

ˆ. 22 5 a


